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Heart rate variability (HRV) is highly non-stationary, even if no perturbing influences
can be identified during the recording of the data. The non-stationarity becomes more
profound when HRV data are measured in intrinsically non-stationary environments, such
as social stress. In general, HRV data measured in such situations are more difficult to
analyze than those measured in constant environments. In this paper, we analyze HRV
data measured during a social stress test using two multiscale approaches, the adaptive
fractal analysis (AFA) and scale-dependent Lyapunov exponent (SDLE), for the purpose of
uncovering differences in HRV between chronic fatigue syndrome (CFS) patients and their
matched-controls. CFS is a debilitating, heterogeneous illness with no known biomarker.
HRV has shown some promise recently as a non-invasive measure of subtle physiological
disturbances and trauma that are otherwise difficult to assess. If the HRV in persons with
CFS are significantly different from their healthy controls, then certain cardiac irregularities
may constitute good candidate biomarkers for CFS. Our multiscale analyses show that
there are notable differences in HRV between CFS and their matched controls before a
social stress test, but these differences seem to diminish during the test. These analyses
illustrate that the two employed multiscale approaches could be useful for the analysis of
HRV measured in various environments, both stationary and non-stationary.

Keywords: heart rate variability, fractal, adaptive fractal analysis, chaos, scale-dependent Lyapunov exponent, Trier

Social Stress Test, chronic fatigue syndrome

1. INTRODUCTION
Modern interest in heart rate variability (HRV) began when it was
observed that it is more than an important and easily accessible
indicator of cardiovascular function, but an important measure
of autonomic nervous system (ANS) function and health in gen-
eral. A salient feature is its spontaneous fluctuation, even if the
environmental parameters are maintained constant and no per-
turbing influences can be identified. Obviously, variations in HRV
will be more complicated if the data are measured in intrinsically
non-stationary environments. Therefore new methods for better
characterizing HRV measured in those situations are desirable.

Since the first observations that HRV can be a sensitive indi-
cator of declining health that precedes changes in heart rate itself
or other physiological measures of distress (Hon and Lee, 1963;
Kleiger et al., 1987; King et al., 2009), a number of methods
have been proposed to analyze HRV data. The most widely used
methods assume a stationary process underlying the statistics,
calculated from time and frequency domain analyses [see Malik
(1996) and references therein], as well as those derived from chaos
theory and random fractal theory (Kobayashi and Musha, 1982;
Goldberger and West, 1987; Babyloyantz and Destexhe, 1988;
Kaplan and Goldberger, 1991; Pincus and Viscarello, 1992; Bigger
et al., 1996; Ho et al., 1997). In this paper, we illustrate the general

use of two multiscale approaches that do not assume a stationary
process, the adaptive fractal analysis (AFA) (Gao et al., 2011b;
Kuznetsov et al., 2012; Riley et al., 2012), and the scale-dependent
Lyapunov exponent (SDLE) (Gao et al., 2006a, 2007, 2012d), for
the analysis of HRV in a study of chronic fatigue syndrome (CFS)
patients with matched healthy controls.

Multiscale analysis of heart rate was first considered over a
decade ago by groups exploring non-linear dynamics in physiol-
ogy, for example (Costa et al., 2002, 2005). These studies, while
quite interesting in their methods, explored datasets that were
not subtle in their impact on cardiovascular physiology. Such
sophisticated techniques were not needed to distinguish healthy
heart rates from those in the diseases being considered (conges-
tive heart failure and atrial fibrillation). The same dataset has
been explored further by many others using different multiscale
analysis techniques, for example (Hu et al., 2009a, 2010). These
analyses have added to a growing interest in multiscale analysis
of physiology in general (West, 2010), but studies using multi-
scale techniques to analyze more challenging datasets where the
cardiac disturbances are more subtle (such as those found in
CFS) are very rare. The techniques demonstrated here show some
promise when the cardiac disturbances are subtle and the effect
sizes are small.
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CFS is a heterogeneous illness, with subsets of patients poten-
tially having autonomic nervous system (ANS), immune system,
and endocrine system involvement (Newton et al., 2011; Rahman
et al., 2011). While no known biomarker for CFS has been iden-
tified to date, recent small-sample studies have suggested certain
cardiac irregularities, such as low nocturnal HRV (Boneva et al.,
2007; Burton et al., 2009; Rahman et al., 2011), small left ventri-
cle and orthostatic intolerance (Miwa and Fujita, 2011), short QT
interval (Naschitz et al., 2006), and low blood volume and dimin-
ished cardiac function (Hurwitz et al., 2009; Hollingsworth et al.,
2011), are associated with CFS. It is not known if the cardiac irreg-
ularities are themselves a cause of the symptoms of CFS or if they
are symptoms of the autonomic dysfunction and other systemic
breakdowns which are more directly causative. Whatever the case,
analysis of ECG data appears to show promise and, given the data
accessibility and feasibility of collecting it, it behooves us to look
beyond resting data to data collected in more stressful environ-
ments, and to analyze the data with methods that do not assume
stationarity.

We shall employ two relatively new and fundamentally differ-
ent multiscale approaches to characterize HRV of control and CFS
patients. While we hope to shed some new light on the pathology
of CFS through analysis of HRV, for the interest of this special
issue, we will make our best efforts to illustrate how these meth-
ods are used to analyze our data, so that interested readers may
readily adapt the methods to analyze their HRV data measured in
other situations, both stationary and non-stationary.

2. METHODS
2.1. DATA
The HRV data analyzed here were derived from subjects who par-
ticipated on the third day of the 3-day clinical study taking place
at Emory University’s Atlanta Clinical and Translational Science
Institute (ACTSI, formerly known as General Clinical Research
Center or GCRC). Subjects who participated in the ACTSI study
were identified from the baseline (2004–2005) (Reeves et al.,
2005) and follow-up waves of the Georgia longitudinal study
on CFS and Chronic Unwellness. This study adhered to human
experimentation guidelines of the U.S. Department of Health
and Human Services, was approved by the Centers for Disease
Control and Prevention (CDC) Human Subjects Review Board,
and all participants gave written informed consent. The ACTSI
study was a 1:2 case-control study design with matching on
age within 5 years, sex, race/ethnicity, and BMI (≥30 kg/m2,
obese or not). The case-control status was determined by the
classifications from the two waves (baseline and follow-up) of
the Georgia longitudinal study. Subjects stayed overnight at the
Emory clinic during their participation in the 3-day ACTSI
study. The study consisted of two components: the first 2 days
involved brain imaging in conjunction with studies of cogni-
tion and the ANS, and the third day involved a stress-induced
challenge V the Trier Social Stress Test (TSST) V to test the
hypothalamic pituitary adrenal (HPA) axis, ANS, and immune
system. Between March 2008 and July 2009, there were 36 CFS
cases and 48 non-fatigued healthy controls completed the 3-
day study. The current analysis will focus on 23 CFS and 41
controls with the HRV data collected during the Day-3 TSST

study. Heart rate data were collected using Biopac feeds into
Somnologica software at 200 Hz on a Dell laptop computer.
A technician attached sensors to subjects and calibrated equip-
ment prior to the TSST. Subjects wore the electrodes and the
recording device from 1:30 pm to 4:00 pm on Day 3. The
ECG data were then stored and transferred to CDC comput-
ers. R–R interval pre-processing from the raw ECG was done
with a LabVIEW script developed at the Brain-Body Center
at University of Illinois, Chicago. This processing interpolated
the R peaks from the 200 Hz data to improve their temporal
localization.

Event times were annotated at the clinic in the Somnologica
software itself, or, occasionally, in an Excel spreadsheet when
the ECG recorder and/or Somnologica software was malfunc-
tioning. Twelve 5-min intervals were chosen to represent each
subject during the roughly 3 h of the TSST. These intervals cor-
respond to three events (e.g., blood draws) before the test, four
key events during the test (the receptionist’s speech, a blood
draw, the subject’s TSST speech, and the math test), and five
events after the test (blood draws), and allow correlations with
gene expression to be made. All IBI data (inter-beat-interval,
also called R–R interval, time between R peaks in msec) were
manually inspected and corrected for artifacts prior to anal-
yses (CardioEdit; Brain-Body Center, University of Illinois at
Chicago, 2007). Missed and/or incorrect R peak detections were
manually corrected using the ECG waveform when available.
Otherwise, artifacts were corrected using integer arithmetic (i.e.,
dividing intervals when detections were missed and adding inter-
vals when spuriously invalid detections occurred). During this
process, event times were checked for discrepancies between
the Somnologica annotations and the master Excel spreadsheet
recording for all event times, and between those recorded times
and other data (e.g., physiological events like rapid rise in heart
rate during the TSST speech). Not all subjects had interpretable,
cleanable raw ECG data, or well marked event times for all 12
of the data intervals. Some subjects suffered from arrhythmias
which made the R peak picking software unreliable, and their
data could not be used in this study. Furthermore, we excluded
six subjects who were not consistently classified as CFS at some
point during the multi-year study. Thus, in this study we used
a reduced subset of all the subjects who underwent the TSST.
Losses to the subject pool skewed somewhat the sex, age, race,
and BMI matching of the study, but not significantly as can be
seen in Table 1 below (p-values for age and BMI computed with
a 2-sided t-test; those for sex and race using a 2-tailed Fisher’s
exact test).

In this study, we will focus on the analysis of HRV data mea-
sured before and during the stress tests. To appreciate what our

Table 1 | Deomgraphics of subjects used in this study.

CFS (23) Control (41) p-value

Sex (% female) 91.3 75.6 0.18

Age (average) 47.6 46.3 0.57

Race (% white) 73.9 85.4 0.32

BMI (average) 28.3 26.8 0.21
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HRV data look like, we have shown in Figures 1A,B IBI data of a
control and a CFS subject measured during the stress test. While
the details of the two IBI data sets are different, we do observe
some statistical similarity between them.

2.2. ADAPTIVE FRACTAL ANALYSIS (AFA)
In this paper we will characterize the fractal nature of the IBI
time series with the Hurst parameter, H. Although many excellent
methods for estimating H exist, including the famous detrended
fluctuation analysis (Peng et al., 1994), care should be exercised
by their interpretation, particularly if one is faced with relatively
short time series that contain trends, non-stationarity, or signs of
rhythmic activity (Hu et al., 2009b). One of the better approaches
to tackle these difficulties is the AFA (Gao et al., 2011b, 2012a;
Kuznetsov et al., 2012; Riley et al., 2012). In the following,
we will attempt to explain the method clearly as we apply it
to HRV data.

AFA is based on non-linear adaptive multiscale decomposition
(Gao et al., 2010; Tung et al., 2011), which starts by partitioning a
time series into segments of length w = 2n + 1, where neighbor-
ing segments overlap by n + 1 points, which ensures symmetry.
Each segment is then fitted with the best polynomial of order M.
Note that M = 0 and 1 correspond to piece-wise constant and
linear fitting, respectively. We denote the fitted polynomials for
the i-th and (i + 1)-th segments by y(i)(l1) and y(i+1)(l2), respec-
tively, where l1, l2 = 1, . . . , 2n + 1. We then define the fitting for
the overlapped region as

y(c)(l) = w1y(i)(l + n) + w2y(i+1)(l), l = 1, 2, . . . , n + 1,

(1)

where w1 = (
1 − l−1

n

)
and w2 = l−1

n can be written as (1 − dj/n)

for j = 1, 2, and where dj denotes the distances between the

point and the centers of y(i) and y(i+1), respectively. This means
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FIGURE 1 | Examples of IBI data for a control (A) and CFS (B) subject.

The red curves are the trend signals obtained by the adaptive filter, which
will be explained below.

that the weights decrease linearly with the distance between the
point and the center of the segment. Such a weighting ensures
symmetry and effectively eliminates any jumps or discontinu-
ities around the boundaries of neighboring segments. In fact,
the scheme ensures that the fitting is continuous everywhere,
is smooth at the non-boundary points, and has the right- and
left-derivatives at the boundary. Moreover, since it can deal with
an arbitrary trend without a priori knowledge, it can remove
non-stationarity, including baseline drifts and motion artifacts
(Gao et al., 2011b), and the procedure may also be used as
either high-pass or low-pass filter with superior noise-removal
properties than linear filters, wavelet shrinkage, or chaos-based
noise reduction schemes (Tung et al., 2011). In Figures 1A,B
we have plotted two trend signals in red for the IBI data
shown there, using a window size of w = 101 and a polynomial
order of 2.

Based on the described adaptive decomposition, a frac-
tal analysis can be conducted as follows. Denote IBI data
as u(i), i = 1, . . . , N, and the global smooth trend such as
shown as red curves in Figures 1A,B as v(i), i = 1, . . . , N.
AFA essentially is a scaling law relating the variance of
the residual time series u(i) − v(i)and the window size w
(Gao et al., 2011b)

F(w) =
[ 1

N

N∑
i=1

(u(i) − v(i))2
]1/2 ∼ wH . (2)

Note that in this formulation, IBI data are treated as random walk
processes. This is consistent with the literature (Peng et al., 1993;
Hu et al., 2010) and what is seen in Figures 1A,B. Also note that
for truly fractal processes, the polynomial order does not matter.
This is also largely true for IBI data. In this work, we always fix the
polynomial order to be 1.

2.3. SCALE-DEPENDENT LYAPUNOV EXPONENT (SDLE) ANALYSIS
SDLE is a multiscale complexity measure first introduced in
2006 (Gao et al., 2006a, 2007). It has been further developed
theoretically (Gao et al., 2009, 2012b) and applied to charac-
terize EEG (Gao et al., 2011a, 2012c), HRV (Hu et al., 2009a,
2010), financial time series (Gao et al., 2011c), and Earth’s
geodynamo (Ryan and Sarson, 2008). Recently, SDLE is com-
pared with a number of entropy measures (Gao et al., 2012c).
It is found that SDLE has superior scaling behaviors—it has
well-defined scaling laws for all known major classes of time
series, and embodies all the information approximate entropy
and sample entropy may have. Since we have done an in depth
tutorial of SDLE in Gao et al. (2012d), here we will only briefly
describe SDLE is such a way that the material presented here is
self-contained.

SDLE is a concept defined in a high-dimensional phase space
using the time delay embedding technique (Packard et al., 1980;
Takens, 1981; Sauer et al., 1991). This technique is perhaps the
most significant contribution of chaos theory to practical data
analysis, since non-trivial dynamical systems usually involve
many state variables, and therefore have to be described by a
high-dimensional state (or phase) space. Consider a scalar time
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series x[n] = x(1), x(2), . . . , x(n). The embedding technique
consists of creating vectors of the form:

Vi = [x(i), x(i + L), . . . , x(i + (m − 1)L)], i = 1, . . . ,

Np = n − (m − 1)L, (3)

where n is the total length of the time series, Np is the total num-
ber of constructed vectors, m is the embedding dimension and
L the delay time. The embedding parameters need to be chosen
according to certain optimization criteria. For details, we refer to
chapter 13 of our book Gao et al. (2007).

After a proper phase space is re-constructed, we consider an
ensemble of trajectories. We denote the initial separation between
two nearby trajectories by ε0, and their average separation at time t
and t + �t by εt and εt+�t , respectively. We can then examine the
relation between εt and εt+�t , where �t is small. When �t → 0,
we have,

εt+�t = εt e
λ(εt )�t, (4)

where λ(εt) is the SDLE given by

λ(εt) = ln εt+�t − ln εt

�t
. (5)

Equivalently, we can express this as,

dεt

dt
= λ(εt)εt . (6)

To compute SDLE, we check whether pairs of vectors (Vi, Vi)

defined by Equation (3) satisfy the following Inequality,

εk ≤ ‖Vi − Vj‖ ≤ εk + �εk, k = 1, 2, 3, . . . , (7)

where εk and �εk are arbitrarily chosen small distances, and

||Vi − Vj|| =
√√√√

m∑
w = 1

(
xi + (w − 1)L − xj + (w − 1)L

)2
(8)

Geometrically, Inequality (Equation 7) defines a high-
dimensional shell (which reduces to a ball with radius �εk

when εk = 0; in a 2-D plane, a ball is a circle described by
(x − a)2 + (y − b)2 = r2, where (a, b) is the center of the circle,
and r is the radius). We then monitor the evolution of all such
vector pairs (Vi, Vj) within a shell and take the ensemble average
over indices i, j. Since we are most interested in exponential
or power-law functions, we assume that taking logarithm and
averaging can be exchanged, then Equation (5) can be written as

λ(εt) =
〈
ln ‖Vi + t +�t − Vj + t +�t‖ − ln ‖Vi + t − Vj + t‖

〉

�t
(9)

where t and �t are integers in units of the sampling time,
the angle brackets denote the average over indices i, j within
a shell, and

εt = ‖Vi + t − Vj + t‖ =
√√√√

m∑
w = 1

(
xi + (w − 1)L + t − xj + (w − 1)L + t

)2

(10)
To ease the following discussion, we now list two scaling laws for
SDLE:

(1) For clean chaotic signal, λ(ε) fluctuates slightly around a con-
stant. As is expected, this constant is the very largest positive
Lyapunov exponent, λ1,

λ(ε) = λ1. (11)

(2) For noisy dynamics, on small scales,

λ(ε) ∼ −γ ln ε, (12)

where γ is a coefficient controlling the speed of loss of infor-
mation (i.e., defined as the measure of uncertainty involved
in predicting the value of a random variable). This feature
suggests that entropy generation is infinite when the scale ε

approaches zero.

3. RESULTS
3.1. AFA OF HRV
Random fractal theory is perhaps the most famous model for
HRV. A central theme of random fractal theory is the notion
of long-range correlation characterized by the Hurst parameter
H (Gao et al., 2006b, 2007): a time series is said to have anti-
persistent, short-range or memoryless, or persistent long-range
correlations if 0 < H < 1/2, H = 1/2, or 1/2 < H < 1, respec-
tively. A classic result about HRV dynamics is that HRV data
measured in quiet conditions possess anti-persistent correlations
characterized by 0 < H < 1/2 (Peng et al., 1993).

Figure 2 shows two AFA curves for the data shown in
Figures 1A,B. We observe that the scaling breaks around w = 24.
It turns out this is a generic feature among all the subjects. Note
that the Hurst parameter Hs for the short-time scale is larger
than 1/2, different from most of the literature that H for HRV
is usually smaller than 1/2. The difference could be because our
IBI data were measured during the TSST, while most published
results (e.g., Peng et al., 1993; Hu et al., 2010) used HRV data mea-
sured in resting state. Another explanation could be that on short
time scales HRV is more persistent, as is suggested by Poincare
plots of heart rate, which typically show a strong positive correla-
tion (Otzenberger et al., 1998; Smith and Reynolds, 2006; Smith
et al., 2007). None-the-less, we observe that Hl is smaller than
1/2, indicating that on long time scales, IBI data of control and
CFS subjects still have anti-persistent correlations, similar to HRV
data measured in resting states. Finally, we note that the two AFA
curves are very similar. This is because the original IBI data are
similar, as we pointed out earlier.

The two very desirable properties of AFA are (1) it can read-
ily deal with arbitrarily complicated trends, and (2) it works well
even when the data set is short (Gao et al., 2012a). The latter prop-
erty enables us to apply AFA to the six 5-min IBI data measured
before and during the TSST (3 before and 3 during the TSST).
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FIGURE 2 | AFA of the IBI data shown in Figures 1A,B. The scaling break
around w = 24 is generic among all the subjects. (A,B) The red circles are
for computed H, the blue lines are a linear fit for Hs, and the green lines are
linear fits for Hl .

When AFA is extended to these data sets, according to the two
conditions, before and during the TSST, we find that the knee
point around w ≈ 24 is still generically present. The second, long-
time scale scaling regime, however, becomes shorter, since the IBI
data are shorter. Nevertheless, Hs and Hl are still well-defined.
The results are summarized in Figure 3, where (A1,A2) are for
the data measured before the TSST, and (B1,B2) for the data mea-
sured during the stress tests. Simple statistical tests on the PDF’s
shown in Figure 3 are shown in Table 2. We observe that before
the TSST, group differences exist for Hs and Hl between con-
trol and CFS subjects, although the area under the curve for the
respective ROC plots indicates that each measure is only weakly
discriminatory for individual subjects. However, neither Hs nor
Hl appears to show any substantial differences between control
and CFS during the stress tests (ROC curves were not computed
during the TSST due to their low discriminatory power). These
preliminary observations bear further investigation using studies
with larger sample sizes.

3.2. SDLE OF HRV
In this section, we will focus on whether SDLE shows promise
identifying differences between HRV of healthy control and CFS
subjects during the TSST. For the purpose of the SDLE analysis,
we ensured that 20–30 min of continuous IBI data during the
TSST was obtained rather than only 5 min intervals. Such long
data are needed for SDLE analysis. A drawback is that due to the
small sample size, estimating the PDFs for metrics derived from
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FIGURE 3 | Probability density functions (PDFs) for Hs and Hl of control

and CFS subjects, where (A1, A2) are for data measured before the

TSST, and (B1, B2) are for data measured during the stress tests.

Table 2 | Statistical tests on Hs and Hl before and during the TSST.

Hs pre Hl pre Hs TSST Hl TSST

p-value 0.0001 0.0071 0.62 0.98

ROC AUC 0.65 0.64 − −

SDLE analysis is ill-posed—this is more doable with AFA, since
AFA works with 5-min IBI data, and we have several different data
intervals before and during the TSST. Therefore with SDLE, we
will use scatter plots.

Figure 4 shows two examples of error growth curves, ln ε(t)
vs. t, and their corresponding SDLE curves, for a control and a
CFS subject. These examples were chosen to illustrate some of the
differences between subjects with regards to SDLE, and do not
illustrate general differences between CFS cases and healthy con-
trols. We observe that the general dynamics on short time scales
is noisy dynamics characterized by a rapid increase in ln ε(t), and
a scaling of Equation 12. Such behavior holds for all the subjects.

A number of metrics from the error growth and SDLE curves
in Figure 4 can be derived and checked to determine if CFS and
control groups can be separated in a statistically significant way.
These metric are:

(1) �εmax: It measures how far apart the error growth curves
originating from different shells (or initial conditions) as
shown in Figures 4A1,B1 are. It basically measured the
degree of non-stationarity in the IBI data. The results are
shown in Figure 5A.

(2) The coefficient γ1 and γ2 of Equation (12), for small and
large ε scales, respectively. Here, small ε generally refers to
the range of ε where the SDLE curve is almost straight. They
are ln ε ≤ −2.6 and ln ε ≤ −3.2 for Figures 4A2,B2, respec-
tively. The large ε scales for those plots correspond to ln ε ≥
−2.6 and ln ε ≥ −3.2. The results are shown in Figures 5B,C.
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(3) ln εmax: This corresponds to the largest value in the error
growth curves, or the right most point in SDLE curves.
Using an ensemble forecasting framework, we have proven
that this quantify plays the role of the maximal amount of
information (Gao et al., 2012c). The results are shown in
Figure 5D.

(4) SDLEmax: the maximal SDLE value, shown in Figure 5E.
(5) SDLEε∗ : this is the SDLE at a fixed scale ε∗. It plays a sim-

ilar role as the commonly used approximate entropy and

Table 3 | Statistical tests on SDLE parameters during the TSST.

�εmax γ1 γ2 lnεmax SDLEmax SDLEε∗

NF mean −0.017 −0.34 −0.054 −2.74 0.26 0.23

NF std dev 0.026 0.069 0.051 0.44 0.045 0.098

CFS mean −0.028 −0.34 −0.031 −2.70 0.26 0.26

CFS std dev 0.05 0.065 0.031 0.46 0.044 0.094

p-value 0.35 0.71 0.026 0.71 0.72 0.14

sample entropy (Gao et al., 2012c). The results are shown in
Figure 5F.

In summary, for all the six metrics derived from SDLE anal-
ysis, there appears to be little difference between healthy control
and CFS subjects. This appearance is easy to validate with sim-
ple statistical tests, as shown in Table 3 (p-values from a 2 tailed
t-test).

As can be seen in Table 3, none of the tests of the SDLE
parameters to distinguish case from control groups are signifi-
cant save one, and that would lose its significance after correction
for multiple hypotheses using, e.g., a Bonferroni correction or a
consideration of false discovery rate (FDR).

4. DISCUSSION
CFS is a debilitating medical disorder withno known biomarker.
Recent small-sample studies about possible cardiac irregulari-
ties (Naschitz et al., 2006; Boneva et al., 2007; Burton et al., 2009;
Hurwitz et al., 2009; Hollingsworth et al., 2011; Miwa and Fujita,
2011; Newton et al., 2011; Rahman et al., 2011; Beaumont et al.,
2012) have motivated us to carefully examine whether HRV in
persons with CFS may be substantially different from that in
healthy controls. Given that previous studies have already tried to
quantify the difference between the HRV of healthy control and
CFS subjects using standard HRV metrics that assume stationar-
ity, we have chosen two completely different multiscale methods,
AFA and SDLE, that do not assume stationarity to analyze HRV,
and used them on data from healthy control and CFS subjects
in a highly non-stationary environment. These two methods are
fundamentally different, because AFA belongs to random fractal
theory, while SDLE has its origin in deterministic chaos theory,
although SDLE has been proven to also be able to characterize
various types of random processes. Using AFA, the data suggests
potential differences between the HRV of healthy control and CFS
subjects prior to social stress tests, but the differences seem to be
diminished during the test itself. The latter observation is fur-
ther supported by SDLE analysis. Both observations may require
further statistical validation and potentially larger sample sizes.

The differences observed in resting HRV between CFS and
healthy controls (before the stress tests) is consonant with the
observation that the complexity of HRV for CFS patients is
reduced during sleep (Boneva et al., 2007). Furthermore, the dif-
ferences in power spectral density of HRV seen by Boneva et al.
(a greater loss of low frequency power in CFS vs. high frequency
power) are consistent with a shifting of the Hurst parameter in
CFS toward an anti-persistent regime seen in this study. While it
might not be appropriate to conclude that there is no difference
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between the HRV of healthy control and CFS subjects during the
TSST, the trend is clear—the difference between HRV of control
and CFS subjects appears to be reduced during stress. This trend
has also been suggested recently by other studies (Beaumont et al.,
2012).

As we pointed out in the beginning, the purpose of our
paper is twofold—to analyze HRV as a window into the potential
ANS anomalies and pathophysiology of CFS, and to demon-
strate the general use of AFA and SDLE for analyzing non-
stationary HRV. The character of the stress test employed during
this study naturally makes our HRV data more non-stationary
than those measured in resting states. The results presented
here suggest that AFA and SDLE could be very useful for the

analysis of HRV, measured in both stationary and non-stationary
environments.
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